CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Optical fingerprint of dark 2p-states in transition metal dichalcogenides

Gunnar Berghäuser (Institutionen för fysik, Kondenserade materiens teori (Chalmers)) ; A. Knorr ; Ermin Malic (Institutionen för fysik, Kondenserade materiens teori (Chalmers))
2d Materials (2053-1583). Vol. 4 (2017), 1,
[Artikel, refereegranskad vetenskaplig]

Atomically thin transition metal dichalcogenides exhibit a remarkably strong Coulomb interaction. This results in a fascinating many-particle physics including a variety of bright and dark excitonic states that determine optical and electronic properties of these materials. So far, the impact of dark states has remained literally in the dark to a large extent, since a measurement of these optically forbidden states is very challenging. Here we demonstrate a strategy to measure a direct fingerprint of dark states even in standard linear absorption spectroscopy. We present a microscopic study on bright and dark higher excitonic states in the presence of disorder for the exemplary material of tungsten disulfide (WS2). We show that the geometric phase cancels the degeneration of 2s and 2p states and that a significant disorder-induced coupling of these bright and dark states offers a strategy to circumvent optical selection rules. As a proof, we show a clear fingerprint of dark 2p states in the absorption spectrum of WS2. The predicted softening of optical selection rules through exciton-disorder coupling is of general nature and therefore applicable to related two-dimensional semiconductors.

Nyckelord: TMD, exciton, dark exciton, linear optic, excitonic absorption spectrum, monolayer mos2, excitons, photoluminescence, graphene, wse2, Materials Science



Denna post skapades 2017-02-15.
CPL Pubid: 248133

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fysik, Kondenserade materiens teori (Chalmers)

Ämnesområden

Hållbar utveckling
Fysik

Chalmers infrastruktur