CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A local Tb theorem for matrix weighted paraproducts

Andreas Rosén (Institutionen för matematiska vetenskaper, Analys och sannolikhetsteori)
Revista matemática iberoamericana (0213-2230). Vol. 32 (2016), 4, p. 1259-1276.
[Artikel, refereegranskad vetenskaplig]

We prove a local Tb theorem for paraproducts acting on vector valued functions, with matrix weighted averaging operators. The condition on the weight is that its square is in the L2 associated matrix A? class. We also introduce and use a new matrix reverse Hölder class. This result generalizes the previously known case of scalar weights from the proof of the Kato square root problem, as well as the case of diagonal weights, recently used in the study of boundary value problems for degenerate elliptic equations.

Nyckelord: Carleson measure, Local Tb theorem, Matrix weight, Paraproduct, Stopping time argument

Denna post skapades 2017-01-30. Senast ändrad 2017-05-15.
CPL Pubid: 247866


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Analys och sannolikhetsteoriInstitutionen för matematiska vetenskaper, Analys och sannolikhetsteori (GU)



Chalmers infrastruktur