CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Plünnecke inequalities for countable abelian groups

Michael Björklund (Institutionen för matematiska vetenskaper, matematik) ; Alexander Fish
Journal für die Reine und Angewandte Mathematik (0075-4102). Vol. 730 (2017), p. 199-224.
[Artikel, refereegranskad vetenskaplig]

We establish in this paper a new form of Plünnecke-type inequalities for ergodic probability measure-preserving actions of any countable abelian group. Using a correspondence principle for product sets, this allows us to deduce lower bounds on the upper and lower Banach densities of any product set in terms of the upper Banach density of an iterated product set of one of its addends. These bounds are new already in the case of the integers. We also introduce the notion of an ergodic basis, which is parallel, but significantly weaker than the analogous notion of an additive basis, and deduce Plünnecke bounds on their impact functions with respect to both the upper and lower Banach densities on any countable abelian group.

Denna post skapades 2017-01-30. Senast ändrad 2017-12-14.
CPL Pubid: 247860


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur