CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Dynamic Mode Decomposition Applied to a Detached-Eddy Simulation of Separated Nozzle Flow

Ragnar Lárusson (Institutionen för tillämpad mekanik, Strömningslära) ; Markus Burak (Institutionen för tillämpad mekanik, Strömningslära) ; Niklas Andersson (Institutionen för tillämpad mekanik, Strömningslära) ; Jan Östlund
Proc. of the 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum (2017)
[Konferensbidrag, övrigt]

The paper presents results from a Dynamic Mode Decomposition (DMD) of data from a Detached Eddy Simulation (DES) of a separated flow inside a truncated ideal nozzle. Two cases of different pressure ratios were studied. Sparsity-Promoting algorithm along with computed optimal mode amplitudes were used to determine importance of individual modes. An ovalization mode (a mode with azimuthal wavenumber m = 2) was found for the lower pressure ratio and was linked to a peak in spectra from probe data. At the higher pressure ratio a helical mode (azimuthal wavenumber m = 1) was found and linked to a peak in spectra from probe data and the nozzle side-load spectrum. The paper shows the potential for using DMD for separated nozzle flows to identify im- portant periodic flow behavior but also underlines the challenges that the method faces, such as noise from resolved turbulence and difficulty identifying modes within the broad low-frequency-range of the side-load spectrum.

Nyckelord: Nozzle Flow, Separated Nozzle Flow, Dynamic Mode Decomposition, Detached Eddy Simulation



Denna post skapades 2017-01-25. Senast ändrad 2017-05-12.
CPL Pubid: 247692

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Strömningslära (2005-2017)

Ämnesområden

Rymd- och flygteknik
Strömningsmekanik

Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)

Relaterade publikationer

Denna publikation ingår i:


Modal Analysis of Supersonic Flow Separation in Nozzles