CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A compartmental CFD-PBM model of high shear wet granulation

X. Yu ; M.J. Hounslow ; G.K. Reynolds ; Anders Rasmuson (Institutionen för kemi och kemiteknik, Kemisk apparatteknik) ; I. Niklasson Björn ; Per Abrahamsson (Institutionen för kemi och kemiteknik, Kemisk apparatteknik)
AIChE Journal (0001-1541). Vol. 63 (2017), 2, p. 438-458.
[Artikel, refereegranskad vetenskaplig]

© 2016 American Institute of Chemical EngineersThe conventional, geometrically lumped description of the physical processes inside a high shear granulator is not reliable for process design and scale-up. In this study, a compartmental Population Balance Model (PBM) with spatial dependence is developed and validated in two lab-scale high shear granulation processes using a 1.9L MiPro granulator and 4L DIOSNA granulator. The compartmental structure is built using a heuristic approach based on computational fluid dynamics (CFD) analysis, which includes the overall flow pattern, velocity and solids concentration. The constant volume Monte Carlo approach is implemented to solve the multi-compartment population balance equations. Different spatial dependent mechanisms are included in the compartmental PBM to describe granule growth. It is concluded that for both cases (low and high liquid content), the adjustment of parameters (e.g. layering, coalescence and breakage rate) can provide a quantitative prediction of the granulation process. © 2016 American Institute of Chemical Engineers AIChE J, 63: 438–458, 2017.

Nyckelord: CFD , high shear wet granulation , Monte Carlo , multiple compartments , population balance model

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-01-24. Senast ändrad 2017-05-17.
CPL Pubid: 247656


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi och kemiteknik, Kemisk apparatteknik



Chalmers infrastruktur