CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On bounded approximations of periodicity for computational homogenization of Stokes flow in porous media

Carl Sandström (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
International Journal for Numerical Methods in Engineering (0029-5981). Vol. 109 (2017), 3, p. 307-325.
[Artikel, refereegranskad vetenskaplig]

By separation of scales and the homogenization of a flow through porous media, a two-scale problem arises where a Darcy-type flow is present on the macroscale and a Stokes flow on the subscale. In this paper, the problem is given as the minimization of a potential. Additional constraints imposing periodicity in a weak sense are added using Lagrange multipliers. In particular, the upper and lower energy bounds for the corresponding strongly periodic problem are produced, quantifying the accuracy of the weakly periodic boundary conditions. A numerical example demonstrates the evaluation of energy bounds and the performance of weakly periodic boundary conditions on a representative volume element.

Nyckelord: incompressible flow, multiscale, viscous flow, finite element methods, permeability, bounds, permeability, formulation, Engineering, Mathematics



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-01-20. Senast ändrad 2017-02-08.
CPL Pubid: 247519

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)

Ämnesområden

Materialvetenskap
Materialteknik

Chalmers infrastruktur