CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Fluorescence recovery after photobleaching in material and life sciences: Putting theory into practice

Niklas Lorén ; Joel Hagman ; Jenny Jonasson (Institutionen för matematiska vetenskaper, matematisk statistik) ; H. Deschout ; Diana Bernin (Institutionen för kemi och kemiteknik, Teknisk ytkemi ; Svenskt NMR-centrum vid Göteborgs universitet ; SuMo Biomaterials) ; F. Cella-Zanacchi ; A. Diaspro ; J.G. McNally ; M. Ameloot ; N. Smisdom ; M. Nydén ; Anne-Marie Hermansson (SuMo Biomaterials ; Institutionen för biologi och bioteknik, Livsmedelsvetenskap) ; Mats Rudemo (SuMo Biomaterials ; Institutionen för matematiska vetenskaper, matematisk statistik) ; K. Braeckmans
Quarterly Reviews of Biophysics (0033-5835). Vol. 48 (2015), 3, p. 323-387.
[Artikel, refereegranskad vetenskaplig]

Copyright © 2015 Cambridge University Press.Fluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-01-19. Senast ändrad 2017-01-27.
CPL Pubid: 247388


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)
Institutionen för kemi och kemiteknik, Teknisk ytkemi
Svenskt NMR-centrum vid Göteborgs universitet (GU)
SuMo Biomaterials
Institutionen för biologi och bioteknik, Livsmedelsvetenskap


Annan matematik
Annan fysik

Chalmers infrastruktur