CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Multimachine Data-Based Prediction of High-Frequency Sensor Signal Noise for Resistive Wall Mode Control in ITER

Yueqiang Liu (Institutionen för rymd- och geovetenskap, Plasmafysik och fusionsenergi) ; S. A. Sabbagh ; I. T. Chapman ; S. Gerasimov ; Y. Gribov ; T. C. Hender ; V. Igochine ; M. Maraschek ; G. Matsunaga ; M. Okabayashi ; E. J. Strait
Fusion science and technology (1536-1055). Vol. 70 (2016), 3, p. 387-405.
[Artikel, refereegranskad vetenskaplig]

The high-frequency noise measured by magnetic sensors, at levels above the typical frequency of resistive wall modes, is analyzed across a range of present tokamak devices including DIII-D, JET, MAST, ASDEX Upgrade, JT-60U, and NSTX. A high-pass filter enables identification of the noise component with Gaussian-like statistics that shares certain common characteristics in all devices considered. A conservative prediction is made for ITER plasma operation of the high-frequency noise component of the sensor signals, to be used for resistive wall mode feedback stabilization, based on the multimachine database. The predicted root-mean-square n = 1 (n is the toroidal mode number) noise level is 10(4) to 10(5) G/s for the voltage signal, and 0.1 to 1 G for the perturbed magnetic field signal. The lower cutoff frequency of the Gaussian pickup noise scales linearly with the sampling frequency, with a scaling coefficient of about 0.1. These basic noise characteristics should be useful for the modeling-based design of the feedback control system for the resistive wall mode in ITER.

Nyckelord: Sensor noise, resistive wall mode



Denna post skapades 2017-01-17. Senast ändrad 2017-01-31.
CPL Pubid: 247190

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för rymd- och geovetenskap, Plasmafysik och fusionsenergi (2013-2017)

Ämnesområden

Reglerteknik

Chalmers infrastruktur