CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Elastically strained and relaxed La0.67Ca0.33MnO3 films grown on lanthanum aluminate substrates with different orientations

Y. A. Boikov ; I. T. Serenkov ; V. I. Sakharov ; Tord Claeson (Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik)
Physics of the Solid State (1063-7834). Vol. 58 (2016), 12, p. 2560-2566.
[Artikel, refereegranskad vetenskaplig]

Structure of 40-nm thick La0.67Ca0.33MnO3 (LCMO) films grown by laser evaporation on (001) and (110) LaAlO3 (LAO) substrates has been investigated using the methods of medium-energy ion scattering and X-ray diffraction. The grown manganite layers are under lateral biaxial compressive mechanical stresses. When (110)LAO wafers are used as the substrates, stresses relax to a great extent; the relaxation is accompanied by the formation of defects in a (3-4)-nm thick manganite-film interlayer adjacent to the LCMO-(110)LAO interface. When studying the structure of the grown layers, their electro- and magnetotransport parameters have been measured. The electroresistance of the LCMO films grown on the substrates of both types reached a maximum at temperature T (M) of about 250 K. At temperatures close to T (M) magnetoresistance of the LCMO/(110)LAO films exceeds that of the LCMO/(001)LAO films by 20-30%; however, the situation is inverse at low temperatures (T < 150 K). At T < T (M) , the magnetotransport in the grown manganite films significantly depends on the spin ordering in ferromagnetic domains, which increase with a decrease in temperature.

Nyckelord: energy ion-scattering, thin-films, anisotropic magnetoresistance, magnetic-properties, single-crystals, perovskite, magnetotransport, microstructure, transition, transport

Denna post skapades 2017-01-16. Senast ändrad 2017-02-20.
CPL Pubid: 247112


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Kvantkomponentfysik



Chalmers infrastruktur