CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Achieving enhanced ionic mobility in nanoporous silica by controlled surface interactions

Negin Yaghini (Institutionen för kemi och kemiteknik, Teknisk ytkemi) ; Mounesha N. Garaga (Institutionen för kemi och kemiteknik, Teknisk ytkemi) ; Luis Antonio Aguilera Medina (Institutionen för fysik, Kondenserade materiens fysik (Chalmers)) ; Aleksandar Matic (Institutionen för fysik, Kondenserade materiens fysik (Chalmers)) ; Michael Persson ; Anna Martinelli (Institutionen för kemi och kemiteknik, Teknisk ytkemi)
Physical Chemistry Chemical Physics - PCCP (1463-9076). (2017)
[Artikel, refereegranskad vetenskaplig]

We report a strategy to enhance the ionic mobility in an emerging class of gels, based on robust nanoporous silica micro-particles, by chemical functionalization of the silica surface. Two very different ionic liquids are used to fill the nano-pores of silica at varying pore filling factors, namely one aprotic imidazolium based (1-methyl-3-hexylimidazolium bis(trifluoromethanesulfonyl)imide, C6C1ImTFSI), and one protic ammonium based (diethylmethylammonium methanesulfonate, DEMAOMs) ionic liquid. Both these ionic liquids display higher ionic mobility when confined in functionalized silica as compared to untreated silica nano-pores, an improvement that is more pronounced at low pore filling factors (i.e. in the nano-sized pore domains) and observed in the whole temperature window investigated (i.e. from −10 to 140 °C). Solid-state NMR, diffusion NMR and dielectric spectroscopy concomitantly demonstrate this effect. The origin of this enhancement is explained in terms of weaker intermolecular interactions and a consequent flipped-ion effect at the silica interface strongly supported by 2D solid-state NMR experiments. The possibility to significantly enhance the ionic mobility by controlling the nature of surface interactions is extremely important in the field of materials science and highlights these structurally tunable gels as promising solid-like electrolytes for use in energy relevant devices. These include, but are not limited to, Li-ion batteries and proton exchange membrane (PEM) fuel cells.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-01-16. Senast ändrad 2017-07-06.
CPL Pubid: 247052


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)