CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

DNA intercalation optimized by two-step molecular lock mechanism

A. A. Almaqwashi ; Johanna Andersson (Institutionen för kemi och kemiteknik, Farmaceutisk teknologi) ; Per Lincoln (Institutionen för kemi och kemiteknik, Fysikalisk kemi) ; I. Rouzina ; F. Westerlund ; M. C. Williams
Scientific Reports (2045-2322). Vol. 6 (2016), p. 37993.
[Artikel, refereegranskad vetenskaplig]

The diverse properties of DNA intercalators, varying in affinity and kinetics over several orders of magnitude, provide a wide range of applications for DNA-ligand assemblies. Unconventional intercalation mechanisms may exhibit high affinity and slow kinetics, properties desired for potential therapeutics. We used single-molecule force spectroscopy to probe the free energy landscape for an unconventional intercalator that binds DNA through a novel two-step mechanism in which the intermediate and final states bind DNA through the same mono-intercalating moiety. During this process, DNA undergoes significant structural rearrangements, first lengthening before relaxing to a shorter DNA-ligand complex in the intermediate state to form a molecular lock. To reach the final bound state, the molecular length must increase again as the ligand threads between disrupted DNA base pairs. This unusual binding mechanism results in an unprecedented optimized combination of high DNA binding affinity and slow kinetics, suggesting a new paradigm for rational design of DNA intercalators.

Denna post skapades 2017-01-13. Senast ändrad 2017-02-20.
CPL Pubid: 246843


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)