CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The nonconforming linear strain tetrahedron for a large deformation elasticity problem

Peter Hansbo ; Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
Computational Mechanics (0178-7675). Vol. 58 (2016), 6, p. 929-935.
[Artikel, refereegranskad vetenskaplig]

In this paper we investigate the performance of the nonconforming linear strain tetrahedron element introduced by Hansbo (Comput Methods Appl Mech Eng 200(9-12):1311-1316, 2011; J Numer Methods Eng 91(10):1105-1114, 2012). This approximation uses midpoints of edges on tetrahedra in three dimensions with either point continuity or mean continuity along edges of the tetrahedra. Since it contains (rotated) bilinear terms it performs substantially better than the standard constant strain element in bending. It also allows for under-integration in the form of one point Gauss integration of volumetric terms in near incompressible situations. We combine under-integration of the volumetric terms with houglass stabilization for the isochoric terms.

Nyckelord: Nonconforming method, Tetrahedral element, Nonlinear elasticity

Denna post skapades 2017-01-13.
CPL Pubid: 246841


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)



Chalmers infrastruktur