CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The impact of stellar feedback on the density and velocity structure of the interstellar medium

Kearn Grisdale ; Oscar Agertz ; Alessandro Romeo (Institutionen för rymd- och geovetenskap, Radioastronomi och astrofysik) ; Florent Renaud ; Justin I. Read
Monthly notices of the Royal Astronomical Society (0035-8711). Vol. 466 (2017), 1, p. 1093-1110.
[Artikel, refereegranskad vetenskaplig]

We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (H I) in disc galaxies. For our analysis, we carry out ∼4.6 pc resolution N-body+adaptive mesh refinement hydrodynamic simulations of isolated galaxies, set up to mimic a Milky Way and a Large and Small Magellanic Cloud. We quantify the density and velocity structure of the interstellar medium using power spectra and compare the simulated galaxies to observed H I in local spiral galaxies from THINGS (The H I Nearby Galaxy Survey). Our models with stellar feedback give an excellent match to the observed THINGS H I density power spectra. We find that kinetic energy power spectra in feedback-regulated galaxies, regardless of galaxy mass and size, show scalings in excellent agreement with supersonic turbulence (E(k) ∝ k−2) on scales below the thickness of the H I layer. We show that feedback influences the gas density field, and drives gas turbulence, up to large (kpc) scales. This is in stark contrast to density fields generated by large-scale gravity-only driven turbulence. We conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales.



Denna post skapades 2017-01-12. Senast ändrad 2017-05-08.
CPL Pubid: 246790

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för rymd- och geovetenskap, Radioastronomi och astrofysik (2010-2017)

Ämnesområden

Astronomi, astrofysik och kosmologi

Chalmers infrastruktur