CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Completely bounded bimodule maps and spectral synthesis

Mahmood Alaghmandan (Institutionen för matematiska vetenskaper, Analys och sannolikhetsteori) ; Ivan G. Todorov ; Lyudmila Turowska (Institutionen för matematiska vetenskaper)
International Journal of Mathematics (0129-167X). Vol. 28 (2017), 10,
[Artikel, refereegranskad vetenskaplig]

We initiate the study of the completely bounded multipliers of the Haagerup tensor product A(G) circle times(h) A(G) of two copies of the Fourier algebra A(G) of a locally compact group G. If E is a closed subset of G we let E# = {(s, t) : st. E} and show that if E# is a set of spectral synthesis for A(G) circle times(h) A(G) then E is a set of local spectral synthesis for A(G). Conversely, we prove that if E is a set of spectral synthesis for A(G) and G is a Moore group then E# is a set of spectral synthesis for A(G)circle times(h) A(G). Using the natural identification of the space of all completely bounded weak* continuous VN(G)' bimodule maps with the dual of A(G)circle times(h) A(G), we show that, in the case G is weakly amenable, such a map leaves the multiplication algebra of L-infinity(G) invariant if and only if its support is contained in the antidiagonal of G.

Nyckelord: Fourier algebra, operator space, bimodule, completely bounded map

Denna post skapades 2017-01-09. Senast ändrad 2017-10-11.
CPL Pubid: 246701


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Analys och sannolikhetsteoriInstitutionen för matematiska vetenskaper, Analys och sannolikhetsteori (GU)
Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)



Chalmers infrastruktur