CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Human cytoplasmic copper chaperones Atox1 and CCS exchange copper ions in vitro.

Svenja Petzoldt ; Dana Kahra ; Michael Kovermann ; Artur P G Dingeldein ; Moritz S Niemiec ; Jörgen Ådén ; Pernilla Wittung-Stafshede (Institutionen för biologi och bioteknik, Kemisk biologi)
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine (1572-8773). Vol. 28 (2015), 3, p. 577-85.
[Artikel, refereegranskad vetenskaplig]

After Ctr1-mediated copper ion (Cu) entry into the human cytoplasm, chaperones Atox1 and CCS deliver Cu to P1B-type ATPases and to superoxide dismutase, respectively, via direct protein-protein interactions. Although the two Cu chaperones are presumed to work along independent pathways, we here assessed cross-reactivity between Atox1 and the first domain of CCS (CCS1) using biochemical and biophysical methods in vitro. By NMR we show that CCS1 is monomeric although it elutes differently from Atox1 in size exclusion chromatography (SEC). This property allows separation of Atox1 and CCS1 by SEC and, combined with the 254/280 nm ratio as an indicator of Cu loading, we demonstrate that Cu can be transferred from one protein to the other. Cu exchange also occurs with full-length CCS and, as expected, the interaction involves the metal binding sites since mutation of Cu-binding cysteine in Atox1 eliminates Cu transfer from CCS1. Cross-reactivity between CCS and Atox1 may aid in regulation of Cu distribution in the cytoplasm.

Nyckelord: Chromatography, Gel, Copper, metabolism, Cytoplasm, metabolism, Humans, Metallochaperones, metabolism, Molecular Chaperones, metabolism, Protein Binding



Denna post skapades 2016-12-22. Senast ändrad 2017-10-03.
CPL Pubid: 246460

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för biologi och bioteknik, Kemisk biologi

Ämnesområden

Biologiska vetenskaper
Biokemi
Biofysik

Chalmers infrastruktur