CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

An Adaptive Finite Element Method in Quantitative Reconstruction of Small Inclusions from Limited Observations

John Bondestam Malmberg (Institutionen för matematiska vetenskaper, matematik) ; Larisa Beilina (Institutionen för matematiska vetenskaper)
(2016)
[Preprint]

We consider a coefficient inverse problem for the dielectric permittivity in Maxwell's equations, with data consisting of boundary measurements of one or two backscattered or transmitted waves. The problem is treated using a Lagrangian approach to the minimization of a Tikhonov functional, where an adaptive finite element method forms the basis of the computations. A new a posteriori error estimate for the coefficient is derived. The method is tested successfully in numerical experiments for the reconstruction of two, three, and four small inclusions with low contrast, as well as the reconstruction of a superposition of two Gaussian functions.



Denna post skapades 2016-12-20.
CPL Pubid: 246421

 

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)
Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Matematik

Chalmers infrastruktur