CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels

Joachim Fritzsche (Institutionen för fysik, Kemisk fysik (Chalmers)) ; David Albinsson (Institutionen för fysik, Kemisk fysik (Chalmers)) ; Michael Fritzsche ; Tomasz Antosiewicz (Institutionen för fysik, Bionanofotonik (Chalmers)) ; Fredrik Westerlund (Institutionen för biologi och bioteknik, Kemisk biologi) ; Christoph Langhammer (Institutionen för fysik, Kemisk fysik (Chalmers))
Nano letters (1530-6984). Vol. 16 (2016), 12, p. 7857-7864.
[Artikel, refereegranskad vetenskaplig]

Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement.

Nyckelord: dark-field scattering spectroscopy; nanochannel; nanofabrication; nanofluidics; parallelized single particle plasmonic readout; Single particle plasmonic sensing



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-12-13. Senast ändrad 2017-09-14.
CPL Pubid: 246075

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)