CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Finding Finite Models in Multi-sorted First-Order Logic

G. Reger ; M. Suda ; Andrei Voronkov (Institutionen för data- och informationsteknik, Programvaruteknik (Chalmers))
Theory and Applications of Satisfiability Testing - Sat 2016 (0302-9743). Vol. 9710 (2016), p. 323-341.
[Konferensbidrag, refereegranskat]

This work extends the existing MACE-style finite model finding approach to multi-sorted first-order logic. This existing approach iteratively assumes increasing domain sizes and encodes the related ground problem as a SAT problem. When moving to the multi-sorted setting each sort may have a different domain size, leading to an explosion in the search space. This paper focusses on methods to tame that search space. The key approach adds additional information to the SAT encoding to suggest which domains should be grown. Evaluation of an implementation of techniques in the Vampire theorem prover shows that they dramatically reduce the search space and that this is an effective approach to find finite models in multi-sorted first-order logic.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-12-09. Senast ändrad 2016-12-19.
CPL Pubid: 246036

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)