CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Maxwell's equations for conductors with impedance boundary conditions: Discontinuous Galerkin and Reduced Basis Methods

Kristin Kirchner (Institutionen för matematiska vetenskaper, Tillämpad matematik och statistik) ; K. Urban ; O. Zeeb
Mathematical Modelling and Numerical Analysis (0764-583X). Vol. 50 (2016), 6, p. 1763-1787.
[Artikel, refereegranskad vetenskaplig]

We consider Maxwell's equations with impedance boundary conditions on a conductive polyhedron with polyhedral holes. Well-posedness of the variational formulation is proven, a hp-discontinuous Galerkin (hp-dG) approximation as well as a priori error estimates are introduced. Next, we use the frequency. as a parameter in a multi-query context. For this purpose, we derive a Reduced Basis Method (RBM) based upon the dG formulation as well as the corresponding a posteriori error bound. Numerical results indicate the efficiency and the robustness of the scheme.

Nyckelord: Maxwell's equations, impedance, conductor, discontinuous Galerkin, reduced Basis Method, partial-differential-equations, posteriori error estimation, field, integral-equation, electromagnetic scattering, local regularization, approximation, constants, Mathematics

Denna post skapades 2016-12-09. Senast ändrad 2016-12-19.
CPL Pubid: 246022


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Tillämpad matematik och statistikInstitutionen för matematiska vetenskaper, Tillämpad matematik och statistik (GU)


Matematisk analys

Chalmers infrastruktur