CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields

David Bolin (Institutionen för matematiska vetenskaper, matematisk statistik) ; J. Lindström ; L. Eklundh ; F. Lindgren
Computational Statistics and Data Analysis (0167-9473). Vol. 53 (2009), 8, p. 2885-2896.
[Artikel, refereegranskad vetenskaplig]

There is a need for efficient methods for estimating trends in spatio-temporal Earth Observation data. A suitable model for such data is a space-varying regression model, where the regression coefficients for the spatial locations are dependent. A second order intrinsic Gaussian Markov Random Field prior is used to specify the spatial covariance structure. Model parameters are estimated using the Expectation Maximisation (EM) algorithm, which allows for feasible computation times for relatively large data sets. Results are illustrated with simulated data sets and real vegetation data from the Sahel area in northern Africa. The results indicate a substantial gain in accuracy compared with methods based on independent ordinary least squares regressions for the individual pixels in the data set. Use of the EM algorithm also gives a substantial performance gain over Markov Chain Monte Carlo-based estimation approaches. © 2008 Elsevier B.V. All rights reserved.



Denna post skapades 2016-12-06.
CPL Pubid: 245893

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)

Ämnesområden

Sannolikhetsteori och statistik

Chalmers infrastruktur