CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Quantifying the uncertainty of contour maps

David Bolin (Institutionen för matematiska vetenskaper, matematisk statistik) ; Finn Lindgren
Journal of Computational And Graphical Statistics (1061-8600). Vol. 26 (2016), 3, p. 513-524.
[Artikel, refereegranskad vetenskaplig]

Contour maps are widely used to display estimates of spatial fields. Instead of showing the estimated field, a contour map only shows a fixed number of contour lines for different levels. However, despite the ubiquitous use of these maps, the uncertainty associated with them has been given a surprisingly small amount of attention. We derive measures of the statistical uncertainty, or quality, of contour maps, and use these to decide an appropriate number of contour lines, that relates to the uncertainty in the estimated spatial field. For practical use in geostatistics and medical imaging, computational methods are constructed, that can be applied to Gaussian Markov random fields, and in particular be used in combination with integrated nested Laplace approximations for latent Gaussian models. The methods are demonstrated on simulated data and an application to temperature estimation is presented.



Denna post skapades 2016-12-06. Senast ändrad 2017-10-11.
CPL Pubid: 245890

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)

Ämnesområden

Matematik
Sannolikhetsteori och statistik

Chalmers infrastruktur