CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Uncertainties of crack propagation analysis in ship structures

Wengang Mao (Institutionen för sjöfart och marin teknik, Marin teknik) ; Jingxia Yue ; Da Wu (Institutionen för sjöfart och marin teknik) ; Luis De Gracia ; Naoki Osawa
Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2016) in Busan, Korea, June 19-24, 2016 Vol. 3 (2016),
[Konferensbidrag, refereegranskat]

Fatigue cracks can be observed quite frequently on today’s ocean crossing vessels. To ensure the safety of ship structures sailing in the sea, it is important to know the residual fatigue life of these damaged ship structures. In this case, the fracture mechanics theory is often employed to estimate how fast these cracks can propagate along ship structures. However, large uncertainties are always associated with the crack prediction and residual fatigue life analysis. In this study, two uncertainties sources will be investigated, i.e. the reliability of encountered wave environments connected with shipload determinations and different fracture estimation methods for crack propagation analysis. Firstly, different available codes based on fracture mechanic theory are used to compute the stress intensity factor related parameters for crack propagation analysis. The analysis is carried out for both 2D and 3D cases of some typical ship structural details. The comparison is presented to illustrate the uncertainties of crack propagation analysis related with different codes. Furthermore, it is assumed that the structural details will undertake dynamic loading from a containership operated in the North Atlantic. A statistical wave model is used to generate wave environments along recorded ship routes for different years. The uncertainties of crack growth analysis related with encountered weather environments is also investigated in the study. The comparison of these two uncertainties indicated the requirement of further development for the fracture mechanics theory and associated numerical codes, as well as the reliable life-cycle encountered weather environments.

Nyckelord: ship structure, uncertainty, crack propagation, Franc2D/3D, XFEM, Fracture mechanics, Paris law.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-12-05. Senast ändrad 2017-03-16.
CPL Pubid: 245852

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för sjöfart och marin teknik, Marin teknik (2015-2017)
Institutionen för sjöfart och marin teknik (2005-2017)

Ämnesområden

Energi
Transport
Hållbar utveckling
Annan samhällsbyggnadsteknik
Fastkroppsmekanik
Annan teknik

Chalmers infrastruktur