CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Cell-to-cell heterogeneity emerges as consequence of metabolic cooperation in a synthetic yeast community

Kate Campbell (Institutionen för biologi och bioteknik, Systembiologi) ; J. Vowinckel ; M. Ralser
Biotechnology Journal (1860-6768). Vol. 11 (2016), 9, p. 1169-1178.
[Artikel, refereegranskad vetenskaplig]

Cells that grow together respond heterogeneously to stress even when they are genetically similar. Metabolism, a key determinant of cellular stress tolerance, may be one source of this phenotypic heterogeneity, however, this relationship is largely unclear. We used self-establishing metabolically cooperating (SeMeCo) yeast communities, in which metabolic cooperation can be followed on the basis of genotype, as a model to dissect the role of metabolic cooperation in single-cell heterogeneity. Cells within SeMeCo communities showed to be highly heterogeneous in their stress tolerance, while the survival of each cell under heat or oxidative stress, was strongly determined by its metabolic specialization. This heterogeneity emerged for all metabolite exchange interactions studied (histidine, leucine, uracil, and methionine) as well as oxidant (H2O2, diamide) and heat stress treatments. In contrast, the SeMeCo community collectively showed to be similarly tolerant to stress as wild-type populations. Moreover, stress heterogeneity did not establish as sole consequence of metabolic genotype (auxotrophic background) of the single cell, but was observed only for cells that cooperated according to their metabolic capacity. We therefore conclude that phenotypic heterogeneity and cell to cell differences in stress tolerance are emergent properties when cells cooperate in metabolism.

Nyckelord: Heat stress, Metabolic cooperation, Oxidative stress, Self-establishing metabolically cooperating yeast community



Denna post skapades 2016-12-05. Senast ändrad 2017-09-14.
CPL Pubid: 245830

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för biologi och bioteknik, Systembiologi

Ämnesområden

Biokemi och molekylärbiologi

Chalmers infrastruktur