CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Low-latency Ultra-Reliable 5G Communications: Finite-Blocklength Bounds and Coding Schemes

Johan Östman (Institutionen för signaler och system, Kommunikationssystem) ; Giuseppe Durisi (Institutionen för signaler och system, Kommunikationssystem) ; Erik G. Ström (Institutionen för signaler och system, Kommunikationssystem) ; Jingya Li ; Henrik Sahlin ; Gianluigi Liva
2017 IEEE Conference on Systems, Communications and Coding (2016)
[Konferensbidrag, refereegranskat]

Future autonomous systems require wireless connectivity able to support extremely stringent requirements on both latency and reliability. In this paper, we leverage recent developments in the field of finite-blocklength information theory to illustrate how to optimally design wireless systems in the presence of such stringent constraints. Focusing on a multi-antenna Rayleigh block-fading channel, we obtain bounds on the maximum number of bits that can be transmitted within given bandwidth, latency, and reliability constraints, using an orthogonal frequency-division multiplexing system similar to LTE. These bounds unveil the fundamental interplay between latency, bandwidth, rate, and reliability. Furthermore, they suggest how to optimally use the available spatial and frequency diversity. Finally, we use our bounds to benchmark the performance of an actual coding scheme involving the transmission of short packets.

Nyckelord: Finite blocklength, channel coding, 5G



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-11-26. Senast ändrad 2016-11-26.
CPL Pubid: 245663

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)