CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Compressed Sensing in Wireless Sensor Networks without Explicit Position Information

Christopher Lindberg (Institutionen för signaler och system, Kommunikationssystem) ; Alexandre Graell i Amat (Institutionen för signaler och system, Kommunikationssystem) ; Henk Wymeersch (Institutionen för signaler och system, Kommunikationssystem)
IEEE Transactions on Signal and Information Processing over Networks (2373-776X). (2016)
[Artikel, refereegranskad vetenskaplig]

Reconstruction in compressed sensing relies on knowledge of a sparsifying transform. In a setting where a sink reconstructs a field based on measurements from a wireless sensor network, this transform is tied to the locations of the individual sensors, which may not be available to the sink during reconstruction. In contrast to previous works, we do not assume that the sink knows the position of each sensor to build up the sparsifying basis. Instead, we propose the use of spatial interpolation based on a predetermined sparsifying transform, followed by random linear projections and ratio consensus using local communication between sensors. For this proposed architecture, we upper bound the reconstruction error induced by spatial interpolation, as well as the reconstruction error induced by distributed compression. These upper bounds are then utilized to analyze the communication cost tradeoff between communication to the sink and sensor-to-sensor communication.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-11-16. Senast ändrad 2016-11-16.
CPL Pubid: 245293

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)




Projekt

Denna publikation är ett resultat av följande projekt:


Cooperative Situational Awareness for Wireless Networks (COOPNET) (EC/FP7/258418)