CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Discovering early diabetic neuropathy from epidermal nerve fiber patterns

Claes Andersson (Institutionen för matematiska vetenskaper, matematisk statistik) ; P. Guttorp ; Aila Särkkä (Institutionen för matematiska vetenskaper, matematisk statistik)
Statistics in Medicine (0277-6715). Vol. 35 (2016), 24, p. 4427-4442.
[Artikel, refereegranskad vetenskaplig]

Epidermal nerve fibre (ENF) density and morphology are used to study small fibre involvement in diabetic, HIV, chemotherapy induced and other neuropathies. ENF density and summed length of ENFs per epidermal surface area are reduced, and ENFs may appear more clustered within the epidermis in subjects with small fibre neuropathy than in healthy subjects. Therefore, it is important to understand the spatial structure of ENFs. In this paper, we compare the ENF patterns between healthy subjects and subjects suffering from mild diabetic neuropathy. The study is based on suction skin blister specimens from the right foot of 32 healthy subjects and eight subjects with mild diabetic neuropathy. We regard the ENF entry point (location where the trunks of a nerve enters the epidermis) and ENF end point (termination of the nerve fibres) patterns as realizations of spatial point processes, and develop tools that can be used in the analysis and modelling of ENF patterns. We use spatial summary statistics and shift plots and define a new tool, reactive territory, to study the spatial patterns and to compare the patterns of the two groups. We will also introduce a simple model for these data in order to understand the growth process of the nerve fibres.

Nyckelord: clustering, reactive territory, shift function, spanned angle, spatial point pattern

Denna post skapades 2016-11-16.
CPL Pubid: 245275


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)


Data- och informationsvetenskap

Chalmers infrastruktur