CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Nonlinear response of a ballistic graphene transistor with an ac-driven gate: High harmonic generation and terahertz detection

Yevgeniy Korniyenko (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik) ; O. Shevtsov ; Tomas Löfwander (Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik)
Physical review B ( 2469-9950). Vol. 94 (2016), 12, p. Art no 125445.
[Artikel, refereegranskad vetenskaplig]

We present results for time-dependent electron transport in a ballistic graphene field-effect transistor with an ac-driven gate. Nonlinear response to the ac drive is derived utilizing Floquet theory for scattering states in combination with Landauer-Buttiker theory for transport. We identify two regimes that can be useful for applications: (i) low and (ii) high doping of graphene under source and drain contacts, relative to the doping level in the graphene channel, which in an experiment can be varied by a back gate. In both regimes, inelastic scattering induced by the ac drive can excite quasibound states in the channel that leads to resonance promotion of higher-order sidebands. Already for weak to intermediate ac drive strength, this leads to a substantial change in the direct current between source and drain. For strong ac drive with frequency Omega, we compute the higher harmonics of frequencies n Omega (n integer) in the source-drain conductance. In regime (ii), we show that particular harmonics (for instance, n = 6) can be selectively enhanced by tuning the doping level in the channel or by tuning the drive strength. We propose that the device operated in the weak-drive regime can be used to detect THz radiation, while in the strong-drive regime, it can be used as a frequency multiplier.



Denna post skapades 2016-11-11. Senast ändrad 2017-03-21.
CPL Pubid: 245058

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Ämnesområden

Fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Quantum theory of time-dependent transport in graphene