CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A multiscale method for linear elasticity reducing Poisson locking

P. Henning ; Anna Persson (Institutionen för matematiska vetenskaper, matematik)
Computer Methods in Applied Mechanics and Engineering (0045-7825). Vol. 310 (2016), p. 156-171.
[Artikel, refereegranskad vetenskaplig]

We propose a generalized finite element method for linear elasticity equations with highly varying and oscillating coefficients. The method is formulated in the framework of localized orthogonal decomposition techniques introduced by Malqvist and Peterseim (2014). Assuming only L-infinity-coefficients we prove linear convergence in the H-1-norm, also for materials with large Lame parameter A. The theoretical a priori error estimate is confirmed by numerical examples.

Nyckelord: Linear elasticity, Multiscale, Generalized finite element, LOD, Poisson locking



Denna post skapades 2016-11-11. Senast ändrad 2017-07-03.
CPL Pubid: 245047

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematisk analys
Beräkningsmatematik

Chalmers infrastruktur