CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Real-Time data-driven average active period method for bottleneck detection

Mukund Subramaniyan (Institutionen för produkt- och produktionsutveckling, Produktionssystem) ; Anders Skoogh (Institutionen för produkt- och produktionsutveckling, Produktionssystem) ; Maheshwaran Gopalakrishnan (Institutionen för produkt- och produktionsutveckling, Produktionssystem) ; A. Hanna
International Journal of Design & Nature and Ecodynamics (1755-7437). Vol. 11 (2016), 3, p. 428-437.
[Artikel, refereegranskad vetenskaplig]

Prioritising improvement and maintenance activities is an important part of the production management and development process. Companies need to direct their efforts to the production constraints (bottlenecks) to achieve higher productivity. The first step is to identify the bottlenecks in the production system. A majority of the current bottleneck detection techniques can be classified into two categories, based on the methods used to develop the techniques: Analytical and simulation based. Analytical methods are difficult to use in more complex multi-stepped production systems, and simulation-based approaches are time-consuming and less flexible with regard to changes in the production system. This research paper introduces a real-Time, data-driven algorithm, which examines the average active period of the machines (the time when the machine is not waiting) to identify the bottlenecks based on real-Time shop floor data captured by Manufacturing Execution Systems (MES). The method utilises machine state information and the corresponding time stamps of those states as recorded by MES. The algorithm has been tested on a real-Time MES data set from a manufacturing company. The advantage of this algorithm is that it works for all kinds of production systems, including flow-oriented layouts and parallel-systems, and does not require a simulation model of the production system.

Nyckelord: Average active duration, Bottleneck detection, Data-driven algorithm, Maintenance, Production system

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-11-08. Senast ändrad 2016-11-29.
CPL Pubid: 244931


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för produkt- och produktionsutveckling, Produktionssystem (2005-2017)



Chalmers infrastruktur