CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Deterministic versus randomized adaptive test cover

Peter Damaschke (Institutionen för data- och informationsteknik, Datavetenskap, Algoritmer (Chalmers))
Theoretical Computer Science (0304-3975). Vol. 653 (2016), p. 42-52.
[Artikel, refereegranskad vetenskaplig]

In a combinatorial search problem with binary tests, we are given a set of elements (vertices) and a hypergraph of possible tests (hyperedges), and the goal is to find an unknown target element using a minimum number of tests. We explore the expected test number of randomized strategies. Our main results are that the ratio of the randomized and deterministic test numbers can be logarithmic in the number of elements, that the optimal deterministic test number can be approximated (in polynomial time) only within a logarithmic factor, whereas an approximation ratio 2 can be achieved in the randomized case, and that optimal randomized strategies can be efficiently constructed at least for special classes of graphs.

Nyckelord: combinatorial search, randomization, game theory, LP duality, set cover, fractional graph theory

Denna post skapades 2016-11-07. Senast ändrad 2016-12-09.
CPL Pubid: 244807


Läs direkt!

Länk till annan sajt (kan kräva inloggning)