CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Dispersion free wave splittings for structural elements

Martin Johansson (Institutionen för tillämpad mekanik, Dynamik) ; Peter D. Folkow (Institutionen för tillämpad mekanik, Dynamik) ; Peter Olsson (Institutionen för tillämpad mekanik, Dynamik)
Computers & structures (0045-7949). Vol. 84 (2006), p. 514-27.
[Artikel, refereegranskad vetenskaplig]

Wave splittings are derived for three types of structural elements: membranes, Timoshenko beams, and Mindlin plates. The Timoshenko beam equation and the Mindlin plate equation are inherently dispersive, as is each Fourier component of the membrane equation in an angular decomposition of the field. The distinctive feature of the wave splittings derived in the present paper is that, in homogeneous regions, they transform the dispersive wave equations into simple one-way wave equations without dispersion. Such splittings have uses both for radial scattering problems in the 2D cases and for scattering problems in dispersive media. As an example of how the splittings may be applied, a direct scattering problem is solved for a membrane with radially varying density. The imbedding method is utilized, and agreement is obtained with an FE simulation.

Nyckelord: Wave splitting, Time domain methods, Green´s operator, Imbedding, Membrane, Timoshenko beam, Mindlin plate

Denna post skapades 2006-12-15. Senast ändrad 2015-12-17.
CPL Pubid: 24391


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik (1900-2017)



Chalmers infrastruktur