CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Extending holomorphic maps from Stein manifolds into affine toric varieties

Richard Lärkäng (Institutionen för matematiska vetenskaper, matematik) ; F. Larusson
Proceedings of the American Mathematical Society (0002-9939). Vol. 144 (2016), 11, p. 4613-4626.
[Artikel, refereegranskad vetenskaplig]

A complex manifold Y is said to have the interpolation property if a holomorphic map to Y from a subvariety S of a reduced Stein space X has a holomorphic extension to X if it has a continuous extension. Taking S to be a contractible submanifold of X = C^n gives an ostensibly much weaker property called the convex interpolation property. By a deep theorem of Forstneric, the two properties are equivalent. They (and about a dozen other nontrivially equivalent properties) define the class of Oka manifolds. This paper is the first attempt to develop Oka theory for singular targets. The targets that we study are affine toric varieties, not necessarily normal. We prove that every affine toric variety satisfies a weakening of the interpolation property that is much stronger than the convex interpolation property, but the full interpolation property fails for most affine toric varieties, even for a source as simple as the product of two annuli embedded in C^4.

Nyckelord: Stein manifold, Stein space, affine toric variety, holomorphic map, extension, Mathematics

Denna post skapades 2016-10-24. Senast ändrad 2017-07-03.
CPL Pubid: 243887


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur