CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Core−Shell Nanoplasmonic Sensing for Characterization of Biocorona Formation and Nanoparticle Surface Interactions

Rickard Frost (Institutionen för fysik, Kemisk fysik (Chalmers)) ; Carl Wadell (Institutionen för fysik, Kemisk fysik (Chalmers)) ; Anders Hellman (Institutionen för fysik, Kemisk fysik (Chalmers)) ; Sverker Molander (Institutionen för energi och miljö, Miljösystemanalys) ; Sofia Svedhem (Institutionen för fysik, Biologisk fysik (Chalmers)) ; Michael Persson (Institutionen för kemi och kemiteknik, Teknisk ytkemi) ; Christoph Langhammer (Institutionen för fysik, Kemisk fysik (Chalmers))
ACS Sensors (2379-3694). Vol. 1 (2016), 6, p. 798-806.
[Artikel, refereegranskad vetenskaplig]

Surface properties of nanoparticles imposed by particle size, shape, and surface chemistry are key features that largely determine their environmental fate and effects on biological systems. Consequently, development of analytical tools to characterize surface properties of nanomaterials and their relation to toxicological properties must occur in parallel with applications. As a contribution to this quest, we present a nanoplasmonic sensing strategy that enables systematic in situ characterization of molecule−nanoparticle interactions under well-controlled conditions, in terms of both nanoparticle size and surface chemistry, with particular focus on the importance of surface faceting in crystalline nanoparticles. We assess the performance of our sensing strategy by presenting two case studies. (i) The first is protein corona formation on faceted Au core−SiO2 shell nanoparticles of different sizes, and thus different surface facet-to-edge ratios. Based on 2D and 3D models of the investigated structures, we find that for small particles the curved regions between adjacent facets dominate the response of the corona formation process, whereas the facets dominate the response in the large particle regime. (ii) The second is in situ functionalization of Au core−SiO2 shell nanoparticle surfaces, and analysis of the subsequent protein repellent behavior. Due to the versatility of the presented sensing strategy in studies of nanoparticle surface properties, including in situ surface modifications, and their interactions with (bio)molecules during corona formation, we foresee it to become a valuable tool in the areas of nanomedicine and nanotoxicology.

Nyckelord: nanoparticles, corona, indirect nanoplasmonic sensing, protein adsorption, silanization, facets, core−shell sensing

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-10-17. Senast ändrad 2017-06-28.
CPL Pubid: 243544


Läs direkt!

Länk till annan sajt (kan kräva inloggning)