CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Nanophotonics-based low-temperature PECVD epitaxial crystalline silicon solar cells

W. H. Chen ; R. Cariou ; M. Foldyna ; V. Depauw ; C. Trompoukis ; E. Drouard ; L. Lalouat ; A. Harouri ; J. Liu ; A. Fave ; R. Orobtchouk ; F. Mandorlo ; C. Seassal ; Ines Massiot (Institutionen för fysik, Bionanofotonik (Chalmers)) ; Alexandre Dmitriev (Institutionen för fysik, Bionanofotonik (Chalmers)) ; K. D. Lee ; P. R. I. Cabarrocas
Journal of Physics D: Applied Physics (0022-3727). Vol. 49 (2016), 12,
[Artikel, refereegranskad vetenskaplig]

The enhancement of light absorption via nanopatterning in crystalline silicon solar cells is becoming extremely important with the decrease of wafer thickness for the further reduction of solar cell fabrication cost. In order to study the influence of nanopatterning on crystalline silicon thin-film solar cells, we applied two lithography techniques (laser interference lithography and nanoimprint lithography) combined with two etching techniques (dry and wet) to epitaxial crystalline silicon thin films deposited via plasma-enhanced chemical vapor deposition at 175 degrees C. The influence of nanopatterning with different etching profiles on solar cell performance is studied. We found that the etching profiles (pitch, depth and diameter) have a stronger impact on the passivation quality (open circuit voltage and fill factor) than on the optical performance (short circuit current density) of the solar cells. We also show that nanopatterns obtained via wet-etching can improve solar cell performance; and in contrast, dry-etching leads to poor passivation related to the etching profile, surface damage, and/ or contamination introduced during the etching process.

Nyckelord: nanophotonics, PECVD, thin film, solar cells

Denna post skapades 2016-10-04. Senast ändrad 2017-06-28.
CPL Pubid: 242907


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för fysik, Bionanofotonik (Chalmers)


Den kondenserade materiens fysik

Chalmers infrastruktur



Denna publikation är ett resultat av följande projekt:

Nanophotonics for ultra-thin crystalline silicon photovoltaics (PHOTONVOLTAICS) (EC/FP7/309127)