CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Gaussian radial basis functions for plasma physics: Numerical aspects

Eero Hirvijoki (Institutionen för teknisk fysik) ; J. Candy ; E. Belli ; Ola Embréus (Institutionen för teknisk fysik)
42nd European Physical Society Conference on Plasma Physics, EPS 2015, Lisbon, Portugal, 22-26 June 2015 (2015)
[Konferensbidrag, refereegranskat]

A magnetized plasma is described by the Vlasov equation and the non-linear Fokker-Planck collision operator [1]. The Vlasov part describes phase-space advection and the collision operator adds dissipation due to collisional energy and momentum exchange. Numerical discretization of the collision operator, however, is far from trivial. Recently, we have developed a new approach [2] to address this issue. The new approach is based on an expansion in Gaussian Radial Basis Functions (RBFs), a method widely used in neural network calculations [3]. In this paper, we discusss useful details regarding the numerical implementation of the RBF method.



Denna post skapades 2016-09-28.
CPL Pubid: 242435

 

Institutioner (Chalmers)

Institutionen för teknisk fysik (1900-2015)

Ämnesområden

Plasmafysik

Chalmers infrastruktur