CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Exploiting Riemannian Manifolds for Daily Activity Classification in Video Towards Health Care

Yixiao Yun (Institutionen för signaler och system, Signalbehandling) ; Irene Y.H. Gu (Institutionen för signaler och system, Signalbehandling)
IEEE International Conference on E-health Networking, Application & Services (HealthCom 2016), Munich, Germany, Sept. 14-17, 2016. p. 363-368. (2016)
[Konferensbidrag, refereegranskat]

This paper addresses the problem of classifying activities of daily living in video. The proposed method uses a tree structure of two layers, where in each node of the tree there resides a Riemannian manifold that corresponds to different part-based covariance features. In the first layer, activities are classified according to the dynamics of upper body parts. In the second layer, activities are further classified according to the appearance of local image patches at hands in key frames, where the interacting objects are likely to be attached. The novelties of this paper include: (i) characterizing the motion of upper body parts by a covariance matrix of distances between each pair of key points and the orientations of lines that connect them; (ii) describing human-object interaction by the appearance of local regions around hands in key frames that are selected based on the proximity of hands to other key points; (iii) formulating a pairwise geodesics-based kernel for activity classification on Riemannian manifolds under the log-Euclidean metric. Experiments were conducted on a video dataset containing a total number of 426 video events (activities) from 4 classes. The proposed method is shown to be effective by achieving high classification accuracy (93.79% on average) and small false alarms (1.99% on average) overall, as well as for each individual class.

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-09-20. Senast ändrad 2017-02-08.
CPL Pubid: 242090


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)


Informations- och kommunikationsteknik
Datorseende och robotik (autonoma system)
Robotteknik och automation

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Riemannian Manifold-Based Modeling and Classification Methods for Video Activities with Applications to Assisted Living and Smart Home