CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Classification of Quantum Groups and Belavin-Drinfeld Cohomologies

B. Kadets ; E. Karolinsky ; Iulia Pop (Institutionen för matematiska vetenskaper) ; Alexander Stolin (Institutionen för matematiska vetenskaper, matematik)
Communications in Mathematical Physics (0010-3616). Vol. 344 (2016), 1, p. 1-24.
[Artikel, refereegranskad vetenskaplig]

In the present article we discuss the classification of quantum groups whose quasi-classical limit is a given simple complex Lie algebra g. This problem is reduced to the classification of all Lie bialgebra structures on g(K) , where K= C((ħ)). The associated classical double is of the form g(K) ⊗ KA, where A is one of the following: K[ ε] , where ε2= 0 , K⊕ K or K[ j] , where j2= ħ. The first case is related to quasi-Frobenius Lie algebras. In the second and third cases we introduce a theory of Belavin–Drinfeld cohomology associated to any non-skewsymmetric r-matrix on the Belavin–Drinfeld list (Belavin and Drinfeld in Soviet Sci Rev Sect C: Math Phys Rev 4:93–165, 1984). We prove a one-to-one correspondence between gauge equivalence classes of Lie bialgebra structures on g(K) and cohomology classes (in case II) and twisted cohomology classes (in case III) associated to any non-skewsymmetric r-matrix.

Denna post skapades 2016-09-15. Senast ändrad 2016-10-06.
CPL Pubid: 241819


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)
Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur