CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

First-Principles Microkinetic Modeling of Methane Oxidation over Pd(100) and Pd(111)

Mikkel Jørgensen (Institutionen för fysik, Kemisk fysik (Chalmers) ; Kompetenscentrum katalys (KCK)) ; Henrik Grönbeck (Institutionen för fysik, Kemisk fysik (Chalmers) ; Kompetenscentrum katalys (KCK))
ACS Catalysis (2155-5435). Vol. 6 (2016), p. 6730–6738.
[Artikel, refereegranskad vetenskaplig]

The intrinsic activity of Pd(100) and Pd(111) for methane oxidation is investigated by Density Functional Theory (DFT)-based mean-field microkinetic modeling. The model includes 32 reaction steps, and the calculated turnover frequencies together with reaction orders compare favorably with experimental data. On both surfaces, the reaction proceeds via complete dehydrogenation of methane to elemental carbon followed by different mechanisms for carbon oxidization. Pd(100) is found to be more active than Pd(111) at temperatures from 400 to 1000 K. For both surfaces, the reaction order in methane approaches unity with increasing temperature. The reaction order in water is positive at low temperatures owing to water-promoted carbon oxidation. Methane dissociation is the main rate-controlling step for Pd(111), whereas formation of COH and CO is also controlling the rate over Pd(100). The present work uncovers the detailed reaction mechanisms for complete methane oxidation over palladium, which can be used in catalyst design to target the rate-controlling steps.

Nyckelord: heterogeneous catalysis, microkinetic modeling, DFT, methane oxidation, palladium, Pd(100), Pd(111)

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-09-13. Senast ändrad 2017-09-12.
CPL Pubid: 241686


Läs direkt!

Länk till annan sajt (kan kräva inloggning)