CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The impact of respiration and oxidative stress response on recombinant ?-amylase production by Saccharomyces cerevisiae

José Luis Martinez Ruiz (Institutionen för biologi och bioteknik, Systembiologi) ; Eugenio Meza (Institutionen för biologi och bioteknik, Systembiologi) ; Dina Petranovic (Institutionen för biologi och bioteknik, Systembiologi) ; Jens B. Nielsen (Institutionen för biologi och bioteknik, Systembiologi)
Metabolic Engineering Communications (2214-0301). Vol. 3 (2016), p. 205-210.
[Artikel, refereegranskad vetenskaplig]

Studying protein production is important for fundamental research on cell biology and applied research for biotechnology. Yeast Saccharomyces cerevisiae is an attractive workhorse for production of recombinant proteins as it does not secrete many endogenous proteins and it is therefore easy to purify a secreted product. However, recombinant production at high rates represents a significant metabolic burden for the yeast cells, which results in oxidative stress and ultimately affects the protein production capacity. Here we describe a method to reduce the overall oxidative stress by overexpressing the endogenous HAP1 gene in a S. cerevisiae strain overproducing recombinant α-amylase. We demonstrate how Hap1p can activate a set of oxidative stress response genes and meanwhile contribute to increase the metabolic rate of the yeast strains, therefore mitigating the negative effect of the ROS accumulation associated to protein folding and hence increasing the production capacity during batch fermentations.

Nyckelord: Amylase; Hap1; Oxidative stress response; Protein production; Yeast



Denna post skapades 2016-09-09. Senast ändrad 2016-10-07.
CPL Pubid: 241565

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för biologi och bioteknik, Systembiologi

Ämnesområden

Bioinformatik och systembiologi

Chalmers infrastruktur