CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

On computational homogenization of microscale crack propagation

Erik Svenning (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Martin Fagerström (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik) ; Fredrik Larsson (Institutionen för tillämpad mekanik, Material- och beräkningsmekanik)
International Journal for Numerical Methods in Engineering (0029-5981). Vol. 108 (2016), 1, p. 76-90.
[Artikel, refereegranskad vetenskaplig]

© 2016 John Wiley and Sons, Ltd. The effective response of microstructures undergoing crack propagation is studied by homogenizing the response of statistical volume elements (SVEs). Because conventional boundary conditions (Dirichlet, Neumann and strong periodic) all are inaccurate when cracks intersect the SVE boundary, we herein use first order homogenization to compare the performance of these boundary conditions during the initial stage of crack propagation in the microstructure, prior to macroscopic localization. Using weakly periodic boundary conditions that lead to a mixed formulation with displacements and boundary tractions as unknowns, we can adapt the traction approximation to the problem at hand to obtain better convergence with increasing SVE size. In particular, we show that a piecewise constant traction approximation, which has previously been shown to be efficient for stationary cracks, is more efficient than the conventional boundary conditions in terms of convergence also when crack propagation occurs on the microscale. The performance of the method is demonstrated by examples involving grain boundary crack propagation modelled by conventional cohesive interface elements as well as crack propagation modelled by means of the extended finite element method in combination with the concept of material forces.

Nyckelord: Computational homogenization , Material forces , Microcracks , Multiscale modelling , Weak periodicity , XFEM

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-08-31. Senast ändrad 2016-10-24.
CPL Pubid: 240980


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Material- och beräkningsmekanik (2005-2017)



Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)

Relaterade publikationer

Denna publikation ingår i:

Multiscale modeling of ductile fracture in solids



Denna publikation är ett resultat av följande projekt:

Computational modelling of ductile fracture on multiple geometrical scales (VR//2012-3006)