CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

PROJECTIONS IN L1(G): THE UNIMODULAR CASE

Mahmood Alaghmandan (Institutionen för matematiska vetenskaper) ; Nico Spronk ; Keith Taylor ; Mahya Ghandehari
Proceedings of the American Mathematical Society (0002-9939). Vol. 144 (2016), 11, p. 4929-4941.
[Artikel, refereegranskad vetenskaplig]

We consider the issue of describing all self-adjoint idempotents (projections) in L1(G) when G is a unimodular locally compact group. The approach is to take advantage of known facts concerning subspaces of the Fourier-Stieltjes and Fourier algebras of G and the topology of the dual space of G. We obtain an explicit description of any projection in L1(G) which happens to also lie in the coefficient space of a finite direct sum of irreducible representations. This leads to a complete description of all projections in L1(G) for G belonging to a class of groups that includes SL2(R) and all second countable almost connected nilpotent locally compact groups.

Nyckelord: L1-projection, locally compact group, unimodular, square-integrable representation.



Denna post skapades 2016-08-25.
CPL Pubid: 240776

 

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Matematisk analys

Chalmers infrastruktur