CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Projections In L1(G): The Unimodular Case

Mahmood Alaghmandan (Institutionen för matematiska vetenskaper, Analys och sannolikhetsteori) ; Nico Spronk ; Keith Taylor ; Mahya Ghandehari
Proceedings of the American Mathematical Society (0002-9939). Vol. 144 (2016), 11, p. 4929-4941.
[Artikel, refereegranskad vetenskaplig]

We consider the issue of describing all self-adjoint idempotents (projections) in L1(G) when G is a unimodular locally compact group. The approach is to take advantage of known facts concerning subspaces of the Fourier-Stieltjes and Fourier algebras of G and the topology of the dual space of G. We obtain an explicit description of any projection in L1(G) which happens to also lie in the coefficient space of a finite direct sum of irreducible representations. This leads to a complete description of all projections in L1(G) for G belonging to a class of groups that includes SL2(R) and all second countable almost connected nilpotent locally compact groups.

Nyckelord: L1-projection, locally compact group, unimodular, square-integrable representation.



Denna post skapades 2016-08-25. Senast ändrad 2016-11-08.
CPL Pubid: 240776

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, Analys och sannolikhetsteoriInstitutionen för matematiska vetenskaper, Analys och sannolikhetsteori (GU)

Ämnesområden

Matematisk analys

Chalmers infrastruktur