CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Chemically enhanced carbon nanotubes based Thermal Interface Materials

J. Daon ; Shuangxi Sun (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Di Jiang (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; E. Leveugle ; C. Galindo ; S. Jus ; A. Ziaei ; L. Ye ; Yifeng Fu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Johan Liu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; J. Bai
2015 21st International Workshop on Thermal Investigations of Ics and Systems (Therminic) (2015)
[Konferensbidrag, övrigt]

With progress in microelectronics the component density on a device increases drastically. As a consequence the power density reaches levels that challenge device reliability. New heat dissipation strategies are needed to efficiently drain heat. Thermal Interface Materials (TIMs) are usually used to transfer heat across interfaces, for example between a device and its packaging. Vertically Aligned Carbon Nanotubes (VACNTs) can be used to play this role. Indeed, carbon nanotubes are among the best thermal conductors (similar to 3.000 W/mK) and in the form of VACNT mats, show interesting mechanical properties. On one side, VACNTs are in contact with their growth substrate and there is a low thermal resistance. On the other side, good contact must be created between the opposite substrate and the VACNTs in order to decrease the contact thermal resistance. A thin-film deposition of an amorphous material can be used to play this role. This paper reports a chemically enhanced carbon nanotube based TIM with creation of chemical bonds between the polymer and VACNTs. We show that these covalent bonds enhance the thermal transfer from VACNTs to a copper substrate and can dramatically decrease local resistances. Implementation processes and thermal characterizations of TIMs are studied and reported.

Denna post skapades 2016-08-23.
CPL Pubid: 240660


Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)


Elektroteknik och elektronik

Chalmers infrastruktur