CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Dynamics of microresonator frequency comb generation: models and stability

Tobias Hansson (Institutionen för fysik, Kondenserade materiens teori (Chalmers)) ; S. Wabnitz
Nanophotonics (2192-8606). Vol. 5 (2016), 2, p. 231-243.
[Artikel, refereegranskad vetenskaplig]

Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

Nyckelord: Nonlinear optics, microresonator, frequency comb, modeling, whispering-gallery modes, temporal cavity solitons, group-velocity, dispersion, silicon wave-guides, ring cavity, modulational instability, microring resonators, transmitted light, fiber, chip, Science & Technology - Other Topics, Materials Science, Optics, Physics, laughlin dw, 1983, physical review letters, v51, p75, laughlin dw, 1985, physical review letters, v54, p681



Denna post skapades 2016-08-17.
CPL Pubid: 240354

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för fysik, Kondenserade materiens teori (Chalmers)

Ämnesområden

Optisk fysik

Chalmers infrastruktur