CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Clusters of eigenvalues for the magnetic Laplacian with Robin condition

Magnus Goffeng (Institutionen för matematiska vetenskaper, matematik) ; A. Kachmar ; M. P. Sundqvist
Journal of Mathematical Physics (0022-2488). Vol. 57 (2016), 6, p. artikel nr 063510.
[Artikel, refereegranskad vetenskaplig]

We study the Schrodinger operator with a constant magnetic field in the exterior of a compact domain in Euclidean space. Functions in the domain of the operator are subject to a boundary condition of the third type (a magnetic Robin condition). In addition to the Landau levels, we obtain that the spectrum of this operator consists of clusters of eigenvalues around the Landau levels and that they do accumulate to the Landau levels from below. We give a precise asymptotic formula for the rate of accumulation of eigenvalues in these clusters, which is independent of the boundary condition. Published by AIP Publishing.

Nyckelord: schrodinger-operators, spectral asymptotics, edge states, Physics

Denna post skapades 2016-07-28. Senast ändrad 2016-11-15.
CPL Pubid: 239639


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur