CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Finite Length Weight Enumerator Analysis of Braided Convolutional Codes

Saeedeh Moloudi ; Michael Lentmaier ; Alexandre Graell i Amat (Institutionen för signaler och system, Kommunikationssystem)
International Symposium on Information Theory and Its Applications (ISITA) (2016)
[Konferensbidrag, refereegranskat]

Braided convolutional codes (BCCs) are a class of spatially coupled turbo-like codes (SC-TCs) with excellent belief propagation (BP) thresholds. In this paper we analyze the performance of BCCs in the finite block-length regime. We derive the average weight enumerator function (WEF) and compute the union bound on the performance for the uncoupled BCC ensemble. Our results suggest that the union bound is affected by poor distance properties of a small fraction of codes. By computing the union bound for the expurgated ensemble, we show that the floor improves substantially and very low error rates can be achieved for moderate permutation sizes. Based on the WEF, we also obtain a bound on the minimum distance which indicates that it grows linearly with the permutation size. Finally, we show that the estimated floor for the uncoupled BCC ensemble is also valid for the coupled ensemble by proving that the minimum distance of the coupled ensemble is lower bounded by the minimum distance of the uncoupled ensemble.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-07-20. Senast ändrad 2016-09-19.
CPL Pubid: 239424

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)