CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae

Rui Pereira (Institutionen för biologi och bioteknik, Systembiologi) ; Jens B. Nielsen (Institutionen för biologi och bioteknik, Systembiologi) ; Isabel Rocha
Metabolic Engineering Communications (2214-0301). Vol. 3 (2016), p. 153-163.
[Artikel, refereegranskad vetenskaplig]

Genome-scale metabolic models (GEMs) can be used to evaluate genotype-phenotype relationships and their application to microbial strain engineering is increasing in popularity. Some of the algorithms used to simulate the phenotypes of mutant strains require the determination of a wild-type flux distribution. However, the accuracy of this reference, when calculated with flux balance analysis, has not been studied in detail before.Here, the wild-type simulations of selected GEMs for Saccharomyces cerevisiae have been analysed and most of the models tested predicted erroneous fluxes in central pathways, especially in the pentose phosphate pathway. Since the problematic fluxes were mostly related to areas of the metabolism consuming or producing NADPH/NADH, we have manually curated all reactions including these cofactors by forcing the use of NADPH/NADP+ in anabolic reactions and NADH/NAD+ for catabolic reactions. The curated models predicted more accurate flux distributions and performed better in the simulation of mutant phenotypes.

Nyckelord: Flux distribution; Genome-scale metabolic model; Metabolic engineering; NADH: NADPH; Saccharomyces cerevisiae

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-07-11. Senast ändrad 2017-09-05.
CPL Pubid: 239229


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för biologi och bioteknik, Systembiologi


Bioinformatik och systembiologi

Chalmers infrastruktur