CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Numerical Simulation of Cavitation on a Horizontal Axis Tidal Turbine

Behrad Gharraee (Institutionen för sjöfart och marin teknik, Marin teknik) ; Claes Eskilsson (Institutionen för sjöfart och marin teknik, Marin teknik) ; Rickard Bensow (Institutionen för sjöfart och marin teknik, Marin teknik) ; Guilherme Vaz
The Proceedings of ISOPE-2016 Conference (1098-6189). (2016)
[Konferensbidrag, refereegranskat]

For tidal turbines mounted on floating structures the possibility of cavitation occurring on the blades is higher than for seabed mounted tidal turbines. In this study we present Reynolds-Averaged Navier- Stokes (RANS) solutions of the well-studied Southampton three bladed horizontal axis tidal turbine (HATT). The numerical simulations were carried out using the ReFRESCO viscous flow solver using three types of simulations: (i) steady wetted flow; (ii) unsteady wetted flow and (iii) unsteady cavitating flow. The wetted flow simulations gave overall good prediction of thrust and power coefficients over the entire experimental range of tip speed ratios (TSRs), with the unsteady solution providing the better result. Low numerical uncertainties were obtained for medium to high TSRs and larger for low TSR values, where the flow is transitional and highly separated. The dynamic cavitation simulation was carried out for the case of a cavitation number of 0.63 at a TSR of 7.5. The simulations showed a good agreement of the extent of the sheet cavity. However, the dynamics of the sheet cavities have not been fully captured and the power and thrust coefficients are under predicted compared to the experiments. This is most likely due to lack of mesh resolution outside the wetted flow boundary layer where the cavity dynamics occur, and due to high numerical and experimental uncertainties for such a complex flow case. The simulations showed that existing methodology used for computing cavitation on marine propellers could be applied to HATTs, yielding reliable results. Importantly, simulation of cavitation on HATTs could be used as input for noise and erosion predictions.

Nyckelord: Horizontal Axis Tidal Turbine; Cavitation; Unsteady RANS

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-07-08.
CPL Pubid: 239203


Institutioner (Chalmers)

Institutionen för sjöfart och marin teknik, Marin teknik (2015-2017)


Hållbar utveckling
Marin teknik

Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)