CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

Allan P. Engsig-Karup ; Claes Eskilsson (Institutionen för sjöfart och marin teknik, Marin teknik) ; Daniele Bigoni
The Proceedings of ISOPE-2016 Conference (1098-6189). (2016)
[Konferensbidrag, refereegranskat]

We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a σ-transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation for this new high-order model. The model is shown to exhibit exponential convergence even for very steep waves and there is a good agreement to analytic and experimental data.

Nyckelord: Fully nonlinear wave propagation; potential flow equation; spectral element method; high-order; unstructured mesh.



Denna post skapades 2016-07-08. Senast ändrad 2016-07-08.
CPL Pubid: 239200

 

Institutioner (Chalmers)

Institutionen för sjöfart och marin teknik, Marin teknik

Ämnesområden

Marin teknik

Chalmers infrastruktur