CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Higher-order brick-tetrahedron hybrid method for Maxwell's equations in time domain

Johan Winges (Institutionen för signaler och system, Signalbehandling) ; Thomas Rylander (Institutionen för signaler och system, Signalbehandling)
Journal of Computational Physics (0021-9991). Vol. 321 (2016), p. 698-707.
[Artikel, refereegranskad vetenskaplig]

We present a higher-order brick-tetrahedron hybrid method for Maxwell's equations in time domain. Brick-shaped elements are used for large homogeneous parts of the computational domain, where we exploit mass-lumping and explicit time-stepping. In regions with complex geometry, we use an unstructured mesh of tetrahedrons that share an interface with the brick-shaped elements and, at the interface, tangential continuity of the electric field is imposed in the weak sense by means of Nitsche's method. Implicit time-stepping is used for the tetrahedrons together with the interface. For cavity resonators, the hybrid method reproduces the lowest non-zero eigenvalues with correct multiplicity and, for geometries without field singularities from sharp corners or edges, the numerical eigenvalues converge towards the analytical result with an error that is approximately proportional to h^2p, where h is the cell size and p is the polynomial order of the elements. For a rectangular waveguide, a layer of tetrahedrons embedded in a grid of brick-shaped elements yields a low reflection coefficient that scales approximately as h^2p. Finally, we demonstrate hybrid time-stepping for a lossless closed cavity resonator, where the time-domain response is computed for 300,000 time steps without any signs of instabilities.

Nyckelord: Brick-tetrahedron hybridization; Explicit-implicit time-stepping; Finite element method; Higher-order method; Maxwell's equations; Nitsche's method

Denna post skapades 2016-07-08. Senast ändrad 2016-09-28.
CPL Pubid: 239187


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)


Elektroteknik och elektronik

Chalmers infrastruktur

C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)

Relaterade publikationer

Denna publikation ingår i:

Inverse and optimization problems in electromagnetics -- a finite-element method perspective