CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Curve squeal of rail vehicles: Linear stability analysis and non-linear time-domain simulation

Astrid Pieringer (Institutionen för bygg- och miljöteknik, Teknisk akustik) ; Peter Torstensson (Institutionen för tillämpad mekanik, Dynamik) ; J. Giner
Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance, J. Pombo, (Editor), Civil-Comp Press, Stirlingshire, Scotland (1759-3433). Vol. 110 (2016),
[Konferensbidrag, refereegranskat]

Railway curve squeal arises from self-excited vibrations during curving. In this paper, a combination of a frequency-and a time-domain approach for curve squeal is applied in order to compare and evaluate the two different approaches. In the frequency-domain, linear stability is investigated through complex eigenvalue analysis. The time-domain model is based on a Green's functions approach and uses a convolution procedure to obtain the system response. To ensure comparability, the same submodels are implemented in both squeal models. The wheel model includes a single flexible wheel and accounts for inertia effects due to rotation adopting Eulerian coordinates. The track is modelled using the moving element method technique corresponding to a finite element mesh that travels with the vehicle speed. Coulomb's law with a constant friction coefficient is applied to model the local friction characteristics in the contact zone. The frictional instability arises due to geometrical coupling. The rolling contact model applied is Kalker's variational method in the time domain and a linearized version of this method in the frequency domain. Conditions similar to those of a curve on the Stockholm metro exposed to severe curve squeal are studied with both squeal models. The influence of the wheel-rail friction coefficient and the direction of the resulting creep force on the occurrence of squeal is investigated for vanishing train speed. The results of both models show similar tendencies, but differ in the predicted squeal frequencies.

Nyckelord: Curve squeal; Friction; Instability; Non-linearity; Stability analysis; Time domain; Wheel-rail interaction

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2016-07-05. Senast ändrad 2016-10-07.
CPL Pubid: 238969


Institutioner (Chalmers)

Institutionen för bygg- och miljöteknik, Teknisk akustik (2005-2017)
Institutionen för tillämpad mekanik, Dynamik (1900-2017)


Building Futures
Hållbar utveckling
Teknisk mekanik

Chalmers infrastruktur